Overexpression of heparanase attenuated TGF‐β‐stimulated signaling in tumor cells

نویسندگان

  • Tahira Batool
  • Jianping Fang
  • Uri Barash
  • Aristidis Moustakas
  • Israel Vlodavsky
  • Jin‐Ping Li
چکیده

Heparan sulfate (HS) mediates the activity of various growth factors including TGF-β. Heparanase is an endo-glucuronidase that specifically cleaves and modifies HS structure. In this study, we examined the effect of heparanase expression on TGF-β1-dependent signaling activities. We found that overexpression of heparanase in human tumor cells (i.e., Fadu pharyngeal carcinoma, MCF7 breast carcinoma) attenuated TGF-β1-stimulated Smad phosphorylation and led to a slower cell proliferation. TGF-β1-stimulated Akt and Erk phosphorylation was also affected in the heparanase overexpression cells. This effect involved the enzymatic activity of heparanase, as overexpression of mutant inactive heparanase did not affect TGF-β1 signaling activity. Analysis of HS isolated from Fadu cells revealed an increase in sulfation of the HS that had a rapid turnover in cells overexpressing heparanase. It appears that the structural alterations of HS affect the ability of TGF-β1 to signal via its receptors and elicit a growth response. Given that heparanase expression promotes tumor growth in most cancers, this finding highlights a crosstalk between heparanase, HS, and TGF-β1 function in tumorigenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway

Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...

متن کامل

TGF-β Regulated miR-29a Promotes Angiogenesis through Targeting PTEN in Endothelium

The transforming growth factor-β (TGF-β) pathway plays important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18-25 nucleotides small noncoding RNAs that function by regulating gene expression. Numbers of miRNAs have been found to be regulated by TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is stil...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

Effects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells

Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...

متن کامل

Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling.

Stem cell antigen (Sca)-1/Ly6A, a glycerophosphatidylinositol-linked surface protein, was found to be associated with murine stem cell- and progenitor cell-enriched populations, and also has been linked to the capacity of tumor-initiating cells. Despite these interesting associations, this protein's functional role in these processes remains largely unknown. To identify the mechanism underlying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017